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Abstract

The lateritic aquifers of the southern Indian state of Kerala harbour a unique assemblage of enigmatic stygobitic fishes which are 
encountered very rarely, only when they surface during the digging and cleaning of homestead wells. Here, we focus on one of the 
most unusual members of this group, the catfish Horaglanis, a genus of rarely-collected, tiny, blind, pigment less, and strictly aqui-
fer-residing species. A six-year exploratory and citizen-science backed survey supported by molecular phylogenetic analysis reveals 
novel insights into the diversity, distribution and population structure of Horaglanis. The genus is characterized by high levels of 
intraspecific and interspecific genetic divergence, with phylogenetically distinct species recovered above a 7.0% genetic-distance 
threshold in the mitochondrial cytochrome oxidase subunit 1 gene. Contrasting with this deep genetic divergence, however, is a 
remarkable stasis in external morphology. We identify and describe a new cryptic species, Horaglanis populi, a lineage that is the 
sister group of all currently known species. All four species are represented by multiple haplotypes. Mismatch distribution reveals 
that populations have not experienced recent expansions.
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Introduction

Data scarcity and knowledge shortfalls are two of the 
most important impediments to our ability to understand 
and conserve life on Earth (Hortal et al. 2015). Despite 
more than three centuries of natural history exploration 
and research, we continue to lack fundamental informa-
tion on the diversity (the ‘Linnean shortfall’) and distri-

bution (the ‘Wallacean shortfall’) of many plant and ani-
mal groups (Hortal et al. 2015). Such impediments to our 
knowledge of the living world are even more acute in the 
case of organisms inhabiting hidden or inaccessible en-
vironments, such as caves and subterranean waters (i.e., 
the Racovitzan shortfall) (Ficetola et al. 2019), which are 
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at the same time increasingly subjected to anthropogenic 
threats (Mammola et al. 2019).

Subterranean aquatic habitats often harbour unique 
assemblages of fishes with a high proportion of ‘point 
endemics’ or relic lineages, with no close relatives in sur-
face waters (Galassi et al. 2014). This is especially true 
for bony fishes, with 289 valid species currently known 
from subterranean aquatic habitats on every continent 
except Antarctica (Proudlove 2022). These include some 
spectacular radiations of cave-adapted species (Mao et 
al. 2022), as well as lineages of ‘living fossils’ (Britz 
et al. 2020). These unusual fish species have been aptly 
called the ‘wrecks of ancient life’ (Darwin 1809-1822) 
and ‘ghosts in the water’ (Niemiller et al. 2019); many 
of them enjoy unusual scientific names (e.g., Satan eu-
rystomus Hubbs & Bailey, Aenigmachanna gollum Britz, 
Anoop, Dahanukar & Raghavan), or have emerged as 
laboratory models (e.g., Astyanax mexicanus (de Filippi)) 
for understanding evolution, development, behaviour, 
and human health (Krishnan and Rohner 2017; McGaugh 
et al 2020).

Notwithstanding their interesting and often extraor-
dinary fauna, subterranean aquatic habitats are good ex-
amples of biodiversity shortfalls (Ficetola et al. 2019), 
primarily because they are inaccessible and their inhabi-
tants are rarely collected. Encounters with these subterra-
nean animals are therefore often serendipitous, or happen 
when the gateways to the underground water-world are 
scrutinized – for example in the case of dug-out wells that 
are drained for maintenance (Ohara et al. 2016; Anoop 
et al. 2019). As a result of their unique habitat, informa-
tion on diversity and distribution for most subterranean 
fish species is either highly incomplete or even absent, 
with most species known only from type material. Local 
communities interested in natural history, often the first 
or sometimes the only people to encounter these species 
(Ohara et al. 2016; Anoop et al. 2019), are thus potential-
ly able to play a significant role in improving scientific 
knowledge of this unusual fauna.

A special area of subterranean fish diversity is the 
lateritic landscape in the southern Indian state of Ker-
ala (Raghavan et al. 2021). It is recognized as a global 
hotspot for subterranean fishes, presently numbering 10 
endemic species in five genera (Aenigmachanna, Horag-
lanis, Kryptoglanis, Pangio and Rakthamichthys) and 
two monotypic families (Aenigmachannidae and Kryp-
toglanidae) (Raghavan et al. 2021; Britz et al. 2022). 
Some of these fishes exhibit unusual morphological char-
acters such as the absence of eyes and body pigments 
(Horaglanis spp., and Rakthamichthys spp.), as well as 
the absence of dorsal- (Kryptoglanis shajii) or pelvic-fins 
(Aenigmachanna gollum), or even both these fins (Pan-
gio bhujia Anoop, Britz, Arjun, Dahanukar & Raghavan 
and P. pathala Sundar, Arjun, Sidharthan, Dahanukar & 
Raghavan).

Horaglanis (Fig. 1A) is a genus of catfishes, remark-
able for their bizarre appearance (blind, pigmentless and 
of blood-red coloration), tiny size (< 35mm), occurrence 
in a unique habitat (lateritic aquifers) (Fig. 1B), rarity 
(appearing only occasionally in dug-out wells, Fig. 1C), 

paucity of museum specimens (known until recently just 
from a handful of examples), and unresolved phyloge-
netic and biogeographic affinities (Menon 1951; de Pinna 
1993). Though three species are currently known (Horag-
lanis krishnai Menon, 1951, H. alikunhii Subhash Babu 
& Nair, 2004, H. abdulkalami Subhash Babu, 2012), the 
latter two were poorly described; the taxonomic and geo-
graphic boundaries between the three species have thus 
remained unclear. Fewer than ten published records of 
Horaglanis backed by voucher specimens are available 
(Fig. 1D), and to date no studies have attempted to under-
stand the distribution and genetic diversity of the genus.

A six-year exploratory and citizen science-backed sur-
vey across the lateritic landscape of Kerala has resulted 
in an extensive biogeographic and molecular dataset – 
the largest ever assembled for Horaglanis. Utilizing new 
information derived from these samples, we significant-
ly advance knowledge of, and reduce key biodiversity 
shortfalls for, these enigmatic catfishes. In particular, we 
unravel range sizes and boundaries, highlight their deep 
genetic divergence alongside remarkable morphological 
stasis, and describe a new cryptic species, recovered as 
the sister taxon of the three previously described mem-
bers of the genus.

Materials and Methods

Surveys and sample/data collection

From May 2016 to March 2022, we toured the laterit-
ic regions of the State of Kerala, India, from 12.7°N to 
8.3°N, covering a north-south distance of approximately 
600 km (Fig. 1E). Sampling sites included dug-out wells, 
bore wells, natural wetlands adjacent to lateritic zones, 
home-gardens and plantations, as well as lateritic caves. 
We conducted a series of workshops, focus-group dis-
cussions and informal interactions with communities at 
several localities, including the type locality of the three 
known species. Local villagers were informed of the im-
portance of the species and their conservation needs, and 
they were asked to share information, photographs or vid-
eos if the species were encountered and/or collected. This 
citizen science approach was complemented by our own 
targeted collection efforts including the draining of wells 
and overhead storage tanks, the use of scoop nets in shal-
low wetlands and in water channels in home gardens and 
plantations, as well as the use of baited traps in dug-out 
wells in homesteads, ponds and caves.

Sample preservation and analysis of 
external morphology

All fishes collected for the study were photographed 
alive, euthanized with clove oil, fixed in 5% formalin, and 
preserved in 70% ethanol, or directly preserved in 100% 
ethanol. Specimens that were received dead were fixed in 
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formalin and subsequently transferred to ethanol. Speci-
mens are deposited in the museum collection of Kerala 
University of Fisheries and Ocean Studies (KUFOS), Ko-
chi, India. Characterization and analysis of morphometric 
and meristic information follow methods described in the 
original descriptions of the three species of Horaglanis 
(Menon 1951; Babu and Nayar 2004; Babu 2012), with 
the addition of several characters. Size adjusted multi-
variate morphometric data, expressed as percentage of 
standard length, were plotted using Principal Compo-
nent Analysis (PCA) and the null hypothesis that there 
was no significant difference in the morphometric data 
among species was tested using PERMANOVA (Ander-

son 2001). PCA and PERMANOVA were performed in 
freeware PAST 4.12 (Hammer et al. 2001).

CT scanning

One paratype of Horaglanis populi (KUFOS.F.2022.106) 
was scanned with a Zeiss X-Radia Context CT-scanner in 
two segments (each 10:23 h), without filter at 50 kV and 4 
W, with a voxel size of 2.05 micron, a cone angle of 7.08 
degrees, using an exposure of 1.35 s and 8 frames, and 
3201 projections. Volume was subsequently rendered in 
the software package Amira Pro.

Figure 1. Habitus, habitat and distribution of Horaglanis in Kerala, southwestern India. A Horaglanis in life. B Typical laterite rock 
showing tiny pores. C Homestead lateritic dug-out well in Kerala – habitat of Horaglanis. D Range and species-specific localities 
within the lateritic soil zone of Kerala based on published distribution records prior to current study. E Current distribution records 
resulting from our citizen science campaign. Colored circles are genetically confirmed species, while unfilled/white circles indicate 
records available from social and print media that were not genetically analyzed.
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Distribution range

We estimated Extent of Occurrence (EOO) and Area of 
Occupancy (AOO) as defined by the International Union 
for Conservation of Nature (IUCN Standards and Petitions 
Committee 2022) using the online tool GeoCat (Bachman 
et al. 2011) which considers a minimum spanning polygon 
and 2 km cell width respectively. In the case of Horagla-
nis abdulkalami, however, individuals were recorded from 
two wells, and therefore the distance between the wells 
was used as the EOO. The EOO and AOO calculations 
were done separately for the entire dataset, including all 
known locations, as well as for populations of species 
whose identity was confirmed by genetic analyses.

Genetic analysis

DNA was extracted from 20 freshly preserved spec-
imens and or tissues using QIAamp® DNA Mini Kit – 
(QIAGEN, Germany) following the manufacturer’s pro-
tocol. Four mitochondrial genes, (cytochrome oxidase 

subunit 1 [COI], cytochrome b [cyt b], the small [12S] 
and large [16S] subunit ribosomal ribonucleic acid) were 
amplified, purified and sequenced following published 
protocols (Rüber et al. 2006; Ali et al. 2013; Dahanukar 
et al. 2013; Verma et al. 2019). Chromatograms of DNA 
sequences were checked for the quality of base calls in 
FinchTV 1.4.0 (Geospiza, Inc.; Seattle, WA, USA; http://
www.geospiza.com). A total of 65 new sequences of 
Horaglanis were generated (COI, 20; cyt b, 12; 12S, 
17; and 16S, 16), and were combined with those already 
available on GenBank (Table 1). GenSeq nomenclature 
(Chakrabarty et al. 2013) for sequences generated in the 
current study is provided in Table 2. Sequences were 
aligned separately for each gene using MUSCLE 3.8.31 
(Edgar 2004) implemented in MEGA 11 (Tamura et al. 
2021) and then concatenated. These data were subse-
quently partitioned into four genes (COI, cyt b, 12S and 
16S), as well as the respective three codon positions for 
COI and cyt b. Partition analysis (Chernomor et al. 2016) 
and ModelFinder (Kalyaanamoorthy et al. 2017) were 
used to identify the best partitioning scheme, and nucleo-
tide substitution model based on the minimum Bayesian 

Table 1. Locality, GenBank and haplotype details for cytochrome oxidase subunit 1 (COI), cytochrome b (cyt b), 12S rRNA and 
16S rRNA gene sequences of Horaglanis species.

Species Locality COI cyt b 12S 16S COI 
haplotype

Horaglanis populi Pathanamthitta, Edanad OP825096** OP832204** OP824404** OP824387** Hp1
Horaglanis populi Pathanamthitta, Mallappally OP825097** OP832205** OP824405** OP824388** Hp2
Horaglanis populi Pathanamthitta, Thiruvalla OP825101** OP832207** OP824409** OP824391** Hp3
Horaglanis populi Alappuzha, Chengannur OP825098** OP832206** OP824406** OP824389** Hp3
Horaglanis populi Alappuzha, Chengannur OP825099** – OP824407** – Hp3
Horaglanis populi Alappuzha, Chengannur OP825100** – OP824408** OP824390** Hp4
Horaglanis populi NA* MZ820781 MZ802981 – – Hp5
Horaglanis populi NA* MZ820785 – – – Hp6
Horaglanis populi NA* MZ820784 MZ802984 – – Hp7
Horaglanis abdulkalami Thrissur, Cherpu OP825092** – – – Hab1
Horaglanis abdulkalami Ernakulam, Thuppampadi OP825094** OP832203** OP824403** OP824386** Hab2
Horaglanis abdulkalami Ernakulam, Chottanikara OP825093** – OP824402** OP824385** Hab3
Horaglanis alikunhii Thrissur, Parappukara OP825095** – – – Hal1
Horaglanis alikunhii Thrissur, Mankuttipadam HE819391 HG937614 – – Hal2
Horaglanis alikunhii Thrissur, Mankuttipadam HE819392 – – – Hal2
Horaglanis alikunhii Thrissur, Mankuttipadam HE819393 HG937613 – – Hal2
Horaglanis alikunhii Thrissur, Mankuttipadam HE819394 – – – Hal2
Horaglanis alikunhii NA* MZ820782 MZ802982 – – Hal3
Horaglanis krishnai Kottayam, Thiruvanchoor OP825110** OP832213** OP824417** OP824399** Hk1
Horaglanis krishnai Ernakulam, Pappukavala OP825105** OP832209** OP824413** OP824395** Hk2
Horaglanis krishnai Ernakulam, Avoly OP825111** OP832214** OP824418** OP824400** Hk3
Horaglanis krishnai Ernakulam, Kadayirippu OP825102** – OP824410** OP824392** Hk4
Horaglanis krishnai Ernakulam, Vazhakkulam OP825104** – OP824412** OP824394** Hk5
Horaglanis krishnai Ernakulam, Vazhakkulam OP825108** OP832212** OP824416** OP824398** Hk5
Horaglanis krishnai Ernakulam, Vazhakkulam OP825109** – – – Hk5
Horaglanis krishnai Kottayam, Kattachira OP825103** OP832208** OP824411** OP824393** Hk6
Horaglanis krishnai Kottayam, Kattachira OP825106** OP832210** OP824414** OP824396** Hk7
Horaglanis krishnai Kottayam, Kalathur OP825107** OP832211** OP824415** OP824397** Hk8
Horaglanis krishnai NA* MZ820786 – – – Hk9
Horaglanis krishnai NA* MZ820783 MZ802983 – – Hk10
Horaglanis krishnai NA* MZ820780 MZ802980 – – Hk11

http://www.geospiza.com
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http://www.ncbi.nlm.nih.gov/nuccore/MZ820781
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http://www.ncbi.nlm.nih.gov/nuccore/MZ820785
http://www.ncbi.nlm.nih.gov/nuccore/MZ820784
http://www.ncbi.nlm.nih.gov/nuccore/MZ802984
http://www.ncbi.nlm.nih.gov/nuccore/OP825092
http://www.ncbi.nlm.nih.gov/nuccore/OP825094
http://www.ncbi.nlm.nih.gov/nuccore/OP832203
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http://www.ncbi.nlm.nih.gov/nuccore/HG937614
http://www.ncbi.nlm.nih.gov/nuccore/HE819392
http://www.ncbi.nlm.nih.gov/nuccore/HE819393
http://www.ncbi.nlm.nih.gov/nuccore/HG937613
http://www.ncbi.nlm.nih.gov/nuccore/HE819394
http://www.ncbi.nlm.nih.gov/nuccore/MZ820782
http://www.ncbi.nlm.nih.gov/nuccore/MZ802982
http://www.ncbi.nlm.nih.gov/nuccore/OP825110
http://www.ncbi.nlm.nih.gov/nuccore/OP832213
http://www.ncbi.nlm.nih.gov/nuccore/OP824417
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http://www.ncbi.nlm.nih.gov/nuccore/OP824396
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Information Criterion (BIC) (Schwarz 1978). Maximum 
likelihood (ML) analysis was performed in IQ-TREE 
2.2.0 (Minh et al. 2020) with the best partition scheme 
and ultrafast bootstrap support for 1000 iterations (Hoang 
et al. 2018) (Supplementary Tables S1, S2). The phyloge-
netic tree was edited in FigTree v1.4.4 (Rambaut 2018). 
Genetic uncorrected p-distances for COI and cyt b were 
estimated in MEGA 11 (Tamura et al. 2021).

Because COI sequences were available for the largest 
number of samples, only this locus was used for popu-
lation structure and species delimitation analyses (Bar-
code Gap Analysis and Poisson Tree Process). Assemble 
Species by Automatic Partitioning (ASAP) employing 
uncorrected genetic distances was used for barcode gap 
analysis (Puillandre et al. 2021), while the Poisson Tree 
Process (PTP) was performed using three different ap-
proaches, single-rate with maximum likelihood support 
(PTP), single-rate with Bayesian support (bPTP) and 
multi-rate (mPTP) (Zhang et al. 2013; Kapli et al. 2017). 
All PTP methods were performed using the maximum 
likelihood tree obtained from IQTREE 2.2.0 (Minh et al. 
2020) using the best partition scheme and nucleotide sub-
stitution model.

Nucleotide diversity, number and diversity of hap-
lotypes, Tajima’s D, and demographic history (by con-
structing pairwise mismatch distributions) were estimat-
ed in DnaSP 6.12.03 (Rozas et al. 2017). The genetic 
network was constructed in the freeware POPART (Leigh 
and Bryant 2015) using the median joining method, with 
ε = 0 to derive the minimum spanning network (Bandelt 
et al. 2019).

Comparative material

Horaglanis krishnai (n = 10): KUFOS.SFC.2022.09, 
Thiruvanchoor, Kottayam, Kerala, India; KUFOS.
SFC.2022.10–12, 3 ex., Pappukavala, Muvattupuzha, 
Ernakulam, Kerala, India; KUFOS.SFC.2022.13, Avo-
ly, Muvattupuzha, Ernakulam, Kerala, India; KUFOS.
SFC.2022.14, Kadayirippu, Ernakulam, Kerala, India; 
KUFOS.SFC.2022.15–16, 2 ex., Kattachira, Kottayam, 
Kerala, India; KUFOS.SFC.2022.17, Kalathur, Kotta-
yam, Kerala, India; KUFOS.SFC.2022.18, Amayanoor, 
Kottayam, Kerala, India. Horaglanis abdulkalami (n = 
3): KUFOS.SFC.2022.01, Cherpu, Thrissur, Kerala, In-

Table 2. GenSeq nomenclature for sequences generated in the current study.

Species Locality Voucher GenSeq
Horaglanis populi Pathanamthitta, Mallappally KUFOS.F.2022.101 genseq-1 COI, cyt b, 12S, 16S
Horaglanis populi Pathanamthitta, Edanad KUFOS.F.2022.103 genseq-2 COI, cyt b, 12S, 16S
Horaglanis populi Pathanamthitta, Thiruvalla KUFOS.F.2022.102 genseq-2 COI, cyt b, 12S, 16S
Horaglanis populi Alappuzha, Chengannur KUFOS.F.2022.106 genseq-2 COI, cyt b, 12S, 16S
Horaglanis populi Alappuzha, Chengannur KUFOS.F.2022.104 genseq-2 COI, 12S
Horaglanis populi Alappuzha, Chengannur KUFOS.F.2022.105 genseq-2 COI, 12S, 16S
Horaglanis abdulkalami Thrissur, Cherpu KUFOS.SFC.2022.01 genseq-3 COI
Horaglanis abdulkalami Ernakulam, Thuppampadi KUFOS.SFC.2022.02 genseq-4 COI, cyt b, 12S, 16S
Horaglanis abdulkalami Ernakulam, Chottanikara KUFOS.SFC.2022.03 genseq-4 COI, 12S, 16S
Horaglanis alikunhii Thrissur, Parappukara genseq-5 COI
Horaglanis krishnai Kottayam, Thiruvanchoor KUFOS.SFC.2022.09 genseq-4 COI, cyt b, 12S, 16S
Horaglanis krishnai Ernakulam, Pappukavala KUFOS.SFC.2022.10 genseq-4 COI, cyt b, 12S, 16S
Horaglanis krishnai Ernakulam, Avoly KUFOS.SFC.2022.13 genseq-4 COI, cyt b, 12S, 16S
Horaglanis krishnai Ernakulam, Kadayirippu KUFOS.SFC.2022.14 genseq-4 COI, 12S, 16S
Horaglanis krishnai Ernakulam, Vazhakkulam genseq-5 COI, 12S, 16S
Horaglanis krishnai Ernakulam, Vazhakkulam genseq-5 COI, cyt b, 12S, 16S
Horaglanis krishnai Ernakulam, Vazhakkulam genseq-5 COI
Horaglanis krishnai Kottayam, Kattachira KUFOS.SFC.2022.15 genseq-3 COI, cyt b, 12S, 16S
Horaglanis krishnai Kottayam, Kattachira KUFOS.SFC.2022.15 genseq-3 COI, cyt b, 12S, 16S
Horaglanis krishnai Kottayam, Kalathur KUFOS.SFC.2022.17 genseq-4 COI, cyt b, 12S, 16S

Species Locality COI cyt b 12S 16S COI 
haplotype

Horaglanis krishnai NA* MZ820779 MZ802979 – – Hk11
Horaglanis krishnai NA* MZ820778 MZ802978 – – Hk11
Horaglanis krishnai NA* MZ820777 MZ802977 – – Hk11
Horaglanis krishnai NA* MZ820776 MZ802976 – – Hk11
Horaglanis krishnai NA* MZ820775 MZ802975 – – Hk11
Horaglanis krishnai NA* MZ820774 MZ802974 – – Hk12
* Location details not available; ** sequences generated in the current study

http://www.ncbi.nlm.nih.gov/nuccore/MZ820779
http://www.ncbi.nlm.nih.gov/nuccore/MZ802979
http://www.ncbi.nlm.nih.gov/nuccore/MZ820778
http://www.ncbi.nlm.nih.gov/nuccore/MZ802978
http://www.ncbi.nlm.nih.gov/nuccore/MZ820777
http://www.ncbi.nlm.nih.gov/nuccore/MZ802977
http://www.ncbi.nlm.nih.gov/nuccore/MZ820776
http://www.ncbi.nlm.nih.gov/nuccore/MZ802976
http://www.ncbi.nlm.nih.gov/nuccore/MZ820775
http://www.ncbi.nlm.nih.gov/nuccore/MZ802975
http://www.ncbi.nlm.nih.gov/nuccore/MZ820774
http://www.ncbi.nlm.nih.gov/nuccore/MZ802974
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dia; KUFOS.SFC.2022.02, Thuppampadi, Ernakulam, 
Kerala, India; KUFOS.SFC.2022.03, Chottanikara, Er-
nakulam, Kerala, India.

Results

Restricted range

Specimens of Horaglanis have hitherto been collect-
ed only from homestead dug-out wells (5-10 m deep) 
across the laterite soil formations in Kerala State, to 
which the genus is endemic. As a consequence of these 
unique sampling circumstances, Horaglanis was, until 
recently, known from only seven localities (Menon 1951; 
Mercy 1981; Babu and Nayar 2004; Babu 2012; Vin-
cent 2012). Over the course of our study, we obtained 47 
new vouchered location records for this genus (Fig. 1E), 
of which the vast majority were provided by interested 
members of the public as result of a citizen science cam-
paign. Altitudinal distribution of Horaglanis ranged from 
wells located in villages close to mean sea level up to a 
maximum of 39 m above sea level (asl). The majority of 
records were confined to wells at 6 to 22 m asl with a me-
dian altitude of 12 m asl. Although the distribution range 
of Horaglanis has thus been expanded considerably, the 
genus still has a relatively small extent of occurrence of 
3167 km2 and an area of occupancy of 144 km2 (between 
9.3°N to 10.4°N). This range spreads across the laterit-
ic zones of five districts in Kerala (Alappuzha, Pathana-
mthitta, Kottayam, Ernakulam and Thrissur) (Fig. 1E, 
Table 1), the northernmost and southernmost localities 
separated by a distance of ~150 km. Among the species, 
H. krishnai has the largest distribution, with an extent of 
occurrence of 429 km2, with the southern and northern 
populations separated by an aerial distance of ~85 km. 
Horaglanis abdulkalami is the second-most widespread 
species, with an extent of occurrence of 73 km2 and a dis-

tance of ~82 km separating the northern- and southern-
most populations.

Genetic diversification

Genetic analysis of 65 DNA sequences generated specif-
ically for this study, in addition to 18 sequences already 
available in GenBank, revealed high intraspecific and 
interspecific genetic divergence between the different 
Horaglanis lineages in both the COI (Table 3) and the cyt 
b (Table 4) genes. Maximum likelihood analysis based 
on the COI gene (Fig. 2B) recovered a topology similar 
to that of the concatenated dataset (Fig. 2A). The barcode 
gap analysis using ASAP and three different approach-
es of PTP clearly delineate four species of Horaglanis 
(Fig. 2B). The best score for ASAP had four partitions, 
which separated the clades with a genetic uncorrected p 
distance of at least 7.0% (Supplementary Fig. S1). The 
greatest intraspecific genetic divergence in the COI bar-
coding region was observed in H. krishnai (5.3%), while 
the smallest intraspecific divergence was 7.0% (H. abdul-
kalami vs. H. alikunhii) (Table 3). As a result, a minimum 
genetic barcode gap of 5.3–7.0% separates the different 
species (Fig. 2C).

Three of the four lineages correspond to described 
species, Horaglanis krishnai, H. alikunhii, and H. abdul-
kalami. The unnamed southernmost lineage is described 
below as a new species, Horaglanis populi. All four 
species identified via genetic delimitation had multiple 
haplotypes (Fig. 3E–H), with H. krishnai possessing the 
largest number of unique haplotypes, followed by the 
new species H. populi. The greatest haplotype diversity 
was observed in H. abdulkalami, followed by H. populi 
and H. krishnai, while the greatest nucleotide diversity 
was observed in H. krishnai, followed by H. populi and 
H. abdulkalami (Supplementary Table S3). Mismatch 
distribution of all four species is multimodal (Fig. 3A–
D), indicating a lack of evidence for recent population 
expansion.

Table 3. Percentage genetic p-distances based on cytochrome oxidase subunit 1 (COI) gene. Values in bold are intraspecific dis-
tances.

Species [1] [2] [3] [4]
Horaglanis populi [1] 0.0–4.1
Horaglanis abdulkalami [2] 15.6–17.4 0.3–2.5
Horaglanis alikunhii [3] 15.3–16.5 7.0–8.3 0.0–1.3
Horaglanis krishnai [4] 13.8–16.5 10.0–12.2 10.1–12.3 0.0–5.3

Table 4. Percentage genetic p-distances based on cytochrome b (cyt b) gene. Values in bold are intraspecific distances.

Species [1] [2] [3] [4]
Horaglanis populi [1] 0.1–3.8
Horaglanis abdulkalami [2] 12.3–13.0 0.0
Horaglanis alikunhii [3] 13.0–13.8 7.9 0.0
Horaglanis krishnai [4] 13.0–14.0 11.2–12.1 12.8–13.6 0.1–6.8
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Figure 2. Phylogenetic tree of species of Horaglanis and their delimitation. A Maximum likelihood phylogenetic tree based on 
concatenated mitochondrial COI, cyt b, 12S rRNA and 16S rRNA gene sequences employing best partition scheme and nucleotide 
substitution models. B Maximum likelihood phylogenetic analysis based on COI gene employing best partition scheme and nucle-
otide substitution models. Species delimitation based on ASAP, PTP, bPTP and mPTP processes shown as bars adjacent to species 
names. C Box plots of intraspecific and interspecific genetic p-distances in COI gene. Genetic gap between greatest intraspecific 
(5.3%) and smallest interspecific (7.0%) genetic distance shown in light grey. A, B Clarias species used as outgroups. Values along 
nodes are bootstrap supports based on 1000 iterations. Asterisks indicate sequences generated in the current study.
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The intraspecific genetic distances in the COI gene for 
Horaglanis krishnai, H. populi and H. alikunhii were sig-
nificantly correlated with the geographical distance sepa-
rating the different localities/populations (Supplementary 
Fig. S2D). Whether the observed positive relationship be-
tween the genetic and geographical distance for H. abdul-
kalami (Supplementary Fig. S2C) was significant could 

not be determined as the number of occurrence points was 
fewer than four. The genetic network for all four species 
showed larger numbers of mutations separating the hap-
lotypes (Fig. 3E–F), even from localities that were geo-
graphically adjacent. Despite this large genetic variation, 
Tajima’s D was non-significant (D = 0.7700, P > 0.10), 
suggesting that the COI gene is under neutral evolution.

Figure 3. Mismatch distribution and median joining genetic network based on cytochrome oxidase subunit 1 for A, E Horaglanis 
populi; B, F H. abdulkalami; C, G H. alikunhii; D, H H. krishnai. Haplotype labels as in Table 1.
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Morphological stasis 

All four species of Horaglanis show a remarkable level 
of morphological reduction, with the pectoral fin reduced 
to a single fin spine and several bones missing in addition 

to the absence of eyes and the lateral-line canal system. 
Surprisingly, the external characters that can be observed 
in Horaglanis, and the meristic (Table  5) and morpho-
metric (Table 6) data, show large intraspecific variation 
and no significant differences between the species, and 

Table 5. Intra-specific variation in meristic counts across four different species of Horaglanis.

Species/Locations Dorsal-fin rays Pelvic-fin rays Anal-fin rays Caudal-fin rays 
Horaglanis krishnai

Kottayam1 23–24 6 16–17 22–24
Kottayam2 23–24 6 15–18 26
Ettumanoor3 23 - 17 24
Amayanoor 22 6 15 22
Kattachira (N = 2) 23–24 6 16–17 30–31
Kalathur 24 6 17 23
Thiruvanchoor 23 6 17 22
Pappukavala (N = 3) 23–24 6 16–17 23–27
Avoly 23 6 16 28–30
Kadayirippu 24 6 17 28

Horaglanis alikunhii
Parappukara3 24 6 17 30
Pudukkad4 24 6 16 20
Kodakara4 23 6 16 20
Kodaaly5 23 - 16 -

Horaglanis abdulkalami
Irinjalakuda6 21 6 15 28
Cherpu 23 6 16 22
Kodaaly5 20 - 15 -
Thuppampadi 22 6 16 28
Chottanikara 26 6 18 26

Horaglanis populi
Edanadu 23 6 17 27
Malapally 26 6 17 29
Thiruvalla 24 6 16 25
Chengannur (N = 3) 21–24 6 14–17 23–28

1 Menon (1951); 2 Mercy (1981); 3 Babu and Nayar (2004); 4 Based on photographs; 5 Vincent (2012); 6 Babu (2012)

Table 6. Intraspecific variation in morphometric characters across three different species of Horaglanis from our collection. Com-
parative material of Horaglanis alikunhii was not available for morphometric analysis.

Characters

Horaglanis populi  
(n = 6)

Horaglanis krishnai  
(n = 10)

Horaglanis abdulkalami 
(n = 3)

Holotype Mean 
(sd)

Range Mean 
(sd)

Range Mean  
(sd)

Range

Total Length 37.0 31.9 (3.2) 27.1–37.0 36.2 (5.5) 28.7–43.4 32.4 (0.4) 32–32.8
Standard Length 32.5 28.2 (2.9) 23.9–32.5 32.5 (5.2) 25.0–39.9 28.7 (0.2) 28.5–28.9
% SL
Head length 16.9 17.9 (1.9) 15.7–20.4 16.0 (0.7) 14.9–16.9 17.3 (1.9) 15.1–18.5
Pre-dorsal length 31.3 34.4 (2.3) 31.3–36.9 34.1 (6.1) 27.5–47.8 31.9 (1) 30.9–32.9
Dorsal-fin length 8.9 8.0 (0.8) 6.8–8.9 7.5 (0.7) 6.5–8.7 10 (0.2) 9.8–10.2
Dorsal-fin base length 58.5 61.4 (3.9) 57.4–68.2 58.7 (4.7) 52.1–64.3 59.7 (4.4) 56–64.5
Length from origin of dorsal fin to origin of anal fin 29.0 27.8 (0.9) 26.4–29.0 23.8 (3.3) 18.4–27.8 23.3 (0.3) 23.1–23.6
Length from origin of dorsal fin to origin of pelvic fin 9.0 11.9 (2.1) 9.0–14.1 10.1 (1.7) 7.3–12.6 9.8 (0.5) 9.3–10.2
Anal-fin length 8.8 8.2 (1.0) 7.2–9.9 6.9 (1.2) 5.2–9.0 8.9 (0.3) 8.6–9.1
Anal-fin base length 37.5 36.1 (3.1) 31.6–39.0 39.2 (2.5) 34.8–43.5 39.5 (3.2) 36.2–42.6
Pelvic-fin length 7.8 8.5 (1.4) 7.2–10.9 7.5 (2.8) 4.4–12.1 9.2 (1.2) 7.8–10
Caudal-fin length 15.7 14.7 (1.5) 13.2–16.7 12.5 (1.9) 8.7–15.6 14.2 (0.7) 13.5–14.9
Caudal-peduncle length 9.3 11.9 (2.9) 9.3–16.9 10.8 (2.1) 8.3–15.6 10.5 (0.8) 9.8–11.4
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thus cannot be used to distinguish them. The unexpect-
edly large genetic divergence between the species is thus 
not mirrored by any significant morphological diversi-
fication (Fig. 4); we therefore had to rely on molecular 
characters to diagnose the new species, H. populi.

Horaglanis populi, sp. nov.

https://zoobank.org/64F96C39-BC11-44B6-807B-A0DF-
8D76A97C

Fig. 5

Holotype. KUFOS.F.2022.101, 32.5mm SL. from a dug-
out well at Malapally, Kerala, India (21 m asl), collected 
by Remya L. Sundar, Arya Sidharthan and C.P. Arjun on 
6 Dec 2020.

Paratypes (n = 5). KUFOS.F.2022.102, 23.9mm SL, 
from a dug-out well at Thiruvalla, Kerala, India (7 m 
asl), collected by V.K. Anoop on 11 Dec 2019; KUFOS-
.F.2022.103, 26.8mm SL, from a dug-out well at Edanadu, 
Kerala, India (18 m asl), collected by Remya L. Sundar and 
Arya Sidharthan on 03 Dec 2020; KUFOS.F.2022.104, 
27.4mm SL, from a dug-out well at Thiruvanvandoor, 
Chengannur, Kerala, India (5 m asl), collected by Remya 
L. Sundar on 10 Mar 2022; KUFOS.F.2022.105, 29.0mm 
SL, from a dug-out well at Thiruvanvandoor, Chengan-
nur, Kerala, India (5 m asl), collected by Arya Sidharthan 
on 14 Dec 2020; KUFOS.F.2022.106, 29.4mm SL, from 

a dug-out well in Chengannur, Kerala, India (5 m asl), 
collected by Remya L. Sundar and Arya Sidharthan on 
01 Dec 2021.

Etymology. The species name populi, genitive of the Lat-
in noun populus = people, honours the invaluable contri-
butions made by interested members of the public in the 
southern Indian state of Kerala, helping to document the 
biodiversity of subterranean and groundwater systems, 
including the discovery of this new species.

Diagnosis. A species of Horaglanis as evidenced by the 
absence of eyes and pigment, a blood-red body in life, 
a highly reduced pectoral fin in which only a shortened 
spine is present, an elongate body with long dorsal and 
anal fins extending to the base of the caudal peduncle, 
and four pairs of well-developed barbels. Genetically, 
Horaglanis populi forms a distinct clade, the sister group 
to the other three congeners (Fig. 2), from which it dif-
fers by a genetic uncorrected p distance of 13.8–17.4% 
in the COI gene, and between 12.3–14.0% in the cyt b 
gene. Specifically, H. populi differs from all three known 
species in the barcoding gene (Supplementary Table S4) 
in positions 106 (C vs. T), 115 (T vs. C), 142 (T vs. C), 
171 (G vs. A), 183 (T vs. C), 216 (A vs. C or T), 234 (C 
vs. T), 237 (G vs. A), 265 (T vs. G), 270 (C vs. A), 312 
(A vs. C or T), 324 (A vs. C), 325 (T vs. C) 330 (G. vs. 
A or T), 350 (G vs. T), 363 (T vs. G), 421 (C vs. G), 448 
(C vs. T), 481 (G vs. T), 489 (C vs. T), 496 (A vs. G), 
517 (c vs. T), 528 (G vs. T), 533 (G vs. A), 538 (A vs. 
C), 539 (A vs. G), 542 (T vs. C), 565 (T vs. A), 576 (G 

Figure 4. Principal Component Analysis of multivariate morphometric data presented in Table 4. Factor scores of observations are 
plotted on the first two components that together explained 55.28% of the total variation in the data. Scree plot for factor loadings is 
provided in the inset. There were no significant morphometric differences in the three species (PERMANOVA, 9999 permutations, 
F = 1.576, P = 0.1064).

https://zoobank.org/64F96C39-BC11-44B6-807B-A0DF8D76A97C
https://zoobank.org/64F96C39-BC11-44B6-807B-A0DF8D76A97C
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vs. T or C), 597 (A vs. C), 618 (C vs. T), 633 (G vs. A) 
and 636 (C vs. T).

Description. Body elongated (Fig. 5), round in cross 
section anteriorly, laterally compressed posteriorly, dor-
sal profile slightly convex to start of dorsal fin, straight 
more posteriorly. Ventral profile convex in head region, 
then straight posteriorly. Head large, 15.7–20.4% stan-
dard length (Table 6), with dorsally and laterally bulging 
adductor muscles. Snout truncated. Mouth wide, termi-
nal. Eye absent. Four pairs of barbels: two mandibular, 
one maxillary and one nasal barbel pair; nasal and inner 
mandibular barbels shorter than maxillary and outer man-
dibular barbels. Maxillary and outer mandibular barbels 
reaching posterior border of pectoral fins when folded 
back. Gill opening large, extending to slightly above pec-
toral-fin base; gill membranes united with isthmus. Scales 
absent. Caudal peduncle laterally compressed, 9.3–16.9% 
of standard length. Dorsal fin long, with 22–23 soft rays 
(xiii–xiv unbranched/8–9 branched), originating in ad-
vance of pelvic fin origin. Anal fin long, with xiii–xvii 
unbranched rays, starting opposite dorsal fin ray number 
9, ending opposite base of last dorsal fin ray. Pectoral fin 
vestigial, consisting only of modified pectoral fin spine 
covered by thickened skin. Pelvic fin short, wide, with 
rounded margin, with ii–iv unbranched and 2–4 branched 
rays. Caudal fin with rounded posterior margin, with 8–9 
branched and 2–4 dorsal unbranched and 2–4 ventral un-
branched rays.

Head skeleton well ossified (Fig. 6); neurocranium 
with a single large cranial fontanelle, no epiphyseal 
bridge connecting frontals in dorsal midline; lateral neu-
rocranium wall with large trigeminofacial foramen; su-
praoccipital with long, narrow and pointed crest; oper-
cle small and subtriangular. Jaws massive, dentary and 
premaxilla studded with numerous rows of closely set, 
recurved villiform teeth.

Distribution. Horaglanis populi is restricted to the later-
itic aquifer systems in the Alappuzha and Pathanamthit-
ta Districts of Kerala, southern India, where it has been 
collected from dug-out wells in the towns of Malapally, 
Edanadu, and Chengannur, and the nearby village of Thi-
ruvanvandoor (Fig. 1E).

Discussion

Aquifers are unique subterranean microhabitats owing 
to their strong hydrographical isolation, limited connec-
tivity with surface waters (mostly through springs, small 
pools and dug-out wells), and reduced possibilities for 
long-range dispersal (Trontelj et al. 2009; Juan and Emer-
son 2010; Galassi et al. 2014; Segherloo et al. 2018). Life 
in these microhabitats is constrained by ecological condi-
tions including darkness, reduced concentration of nutri-

Figure 5. Horaglanis populi holotype (KUFOS.F.2022.101, 32.5 mm standard length) in A life and B–F immediately after preser-
vation. A, B Lateral view; C ventral view; D dorsal view; E lateral view of head; F ventral view of head.
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Figure 6. 3-D reconstructed CT-images of head and anterior vertebrae of Horaglanis populi, KUFOS.F.2022.106, 29.3 mm. A Lat-
eral view, note large trigeminofacial foramen (marked by asterisk) in lateral wall of neurocranium; B dorsal view illustrating lack of 
epiphyseal bridge and large cranial fontanelle (margin marked by line of dots); C anterior view of upper and lower jaws, showing 
rows of sharply pointed recurved, villiform teeth.
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ents, carbon and dissolved oxygen, and highly restricted 
free space (Hancock et al. 2005). Of the 289 known sub-
terranean fish species, which include 53 catfishes (Proud-
love 2022), fewer than 10% reside in aquifers. Examples 
include the enigmatic blind catfishes Trogloglanis patter-
soni Eigenmann and Satan eurystomus of the Edwards 
Aquifer in Texas (Langecker and Longley 1983), the 
Phreatobius catfishes of South America (Muriel-Cunha 
and de Pinna 2005), the blind gobies of the genus Ty-
phleotris from southwestern Madagascar (Vences et al. 
2018), and the blind species of Garra from the Zagros 
mountains of Iran (Vatandoust et al. 2019). Horaglanis 
represents the only example of a genus of stygobitic fish-
es associated exclusively with lateritic aquifers – all other 
aquifer-dwelling fishes inhabit limestone formations.

Interestingly, no aquifers elsewhere in the world ap-
pear to have evolved as diverse a fish fauna as that asso-
ciated with the laterite soil formations in the coastal area 
of southwest peninsular India. With the discovery and de-
scription of Horaglanis populi, four species of this catfish 
genus, as well as three species of the swamp-eel genus 
Rakthamichthys and two species of the eel loach genus 
Pangio have been discovered from aquifer-fed wells. All 
these show the typical troglomorphies associated with 
life underground (Raghavan et al. 2021). Two additional 
subterranean species, Aenigmachanna gollum and Kryp-
toglanis shajii Vincent & Thomas, collected also from 
rice paddies and adjoining wetlands, show no obvious 
troglomorphies: they may not be strictly aquifer-dwell-
ing species (Raghavan et al. 2021). Overall, the diversity 
of subterranean fishes in southern peninsular India is ri-
valled only by the radiation of cave fishes of the genus 
Sinocyclocheilus in the karstic regions of southwest Chi-
na (Zhou et al. 2022).

Much like the subterranean habitat in which the genus 
is found, Horaglanis has received very little scientific at-
tention, despite being arguably one of the most unusual 
genera of catfishes known. Of the three nominal species 
previously known, only Horaglanis krishnai has been 
studied in any detail (Menon 1952; Mercy et al. 1982; 
Mercy and Pillai 1985; Mercy et al. 2001; Mercy and 
Pillai 2001). The remaining two are known only from 
their original descriptions (Babu and Nayar 2004; Babu 
2012). Our extensive dataset of 47 new location records 
and 65 new genetic sequences shows that Horaglanis is 
endemic to the part of Kerala State south of the Palghat 
Gap (Fig. 1E), a well-known biogeographic barrier. With 
the exception of the species pair H. abdulkalami and H. 
alikunhii, the species of Horaglanis occur in allopatry. 
The genus is restricted to lateritic aquifers and has been 
encountered solely in groundwater-fed wells. While we 
have no information on the number, size and extent of 
the aquifers populated by Horaglanis, we found that the 
northern extent of its range is limited by the Bharatha-
puzha (the second largest river basin in the region), as 
well as a wide zone of rock formations in which laterite 
rock is absent. This zone (i.e., the northern extremity of 
the distribution of the genus) coincides with the Palghat 
Gap. Similarly, the major barrier separating the southern 
H. krishnai and H. populi from the other two species is 

likely the Periyar-Chalakudy River basin (the largest riv-
er basin in the region). However, some populations of H. 
abdulkalami, though substantially divergent genetically 
from those close to the type locality of this species, occur 
south of the Periyar.

Some stygobitic fishes are known to have large distri-
bution ranges, such as the catfish Prietella phreatophila 
Carranza, whose northern and southernmost populations 
in Mexico are separated by a span of 750 km (Hendrickson 
et al. 2001), or the blind, subterranean cave eel, Ophister-
non candidum (Mees), a north-western Australian endem-
ic (>400 km) (Moore et al. 2018). This vast distribution 
range could be attributed to the ‘interstitial highway’ hy-
pothesis (Ward and Palmer 1994), i.e., the presence of 
an extensive, continuous hypogean habitat. Compared to 
P. phreatophila and O. candidum, the distribution ranges 
of all four species of Horaglanis lie within a north-south 
span of only 150 km. The current distribution of the vari-
ous species of Horaglanis is likely the result of vicariance 
events, or the traditional low-dispersal (movement within 
the aquifers) hypotheses (Trontelj et al. 2009) associated 
with most subterranean taxa – for example, the blind cave 
fishes of Iran (Segherloo et al. 2022). Though Horaglanis 
populations are able to move through the narrow pores of 
aquifers, they are likely confined by barriers such as the 
ones mentioned above, which limit longer distance move-
ments. Another potential vicariance barrier may have re-
sulted from historical changes of eustatic sea level. These 
have occurred frequently since the late Miocene and con-
tinued into the Pleistocene (Miller et al. 2005, 2020); they 
would have led to prolonged marine transgression of the 
coastal areas of Kerala, to which Horaglanis is endem-
ic. These marine transgressions may also have played a 
role in forming distribution barriers leading to vicariant 
speciation (discussed for the case of Sri Lanka in Pethiya-
goda & Sudasinghe 2021). The interesting and complex 
distribution pattern of Horaglanis is thus likely linked to 
successive isolation and reconnection events (Devitt et al. 
2019), that can be further unraveled through integrative 
phylogenomic and hydrological studies.

By generating the first multi-gene phylogeny of Horag-
lanis, we discovered that H. populi comprises the sister 
group of the clade containing its congeners, from which it 
is separated by a genetic distance (in the barcoding region 
of COI) of 13.8–17.4%. With interspecific divergences of 
7.0-17.4%, the four species of Horaglanis were unambig-
uously delimited into distinct species based on both the 
barcode gap analysis and the Poisson tree process. This 
large interspecific genetic distance in Horaglanis is in 
sharp contrast to the lower genetic divergence in the COI 
gene (3.8%) between the morphologically distinct Garra 
typhlops Bruun & Kaiser and G. lorestanensis Mousa-
vi-Sabet & Eagderi, two sympatric, blind Iranian cave 
barbs (Segherloo et al. 2012), but comparable to the three 
obligate cave-dwelling gobies of the Malagasy genus Ty-
phleotris (Vences et al. 2018), in which it is 6.3-9.8%. 
Although the data on genetic divergence in subterranean 
catfishes are limited, both the maximum intraspecific and 
minimum interspecific genetic divergence in Horaglanis 
is higher than those for most surface-dwelling catfishes 
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(see for example, Anjos et al. 2020; Bhattacharjee et al. 
2012; Hashimoto et al. 2020; Zou et al. 2020).

While the descriptions of H. abdulkalami and H. ali-
kunhii (Babu and Nayar 2004; Babu 2012), which were 
based on four specimens and a single specimen, respec-
tively, provided several characters to distinguish them 
from H. krishnai, our study, based on larger series of 
specimens, indicates that all four species of Horaglanis 
are indistinguishable in external morphology. The mer-
istic data showed strong overlap in the character states 
among the four species. Though the morphometric data 
were available only for three of these (Table 6, Fig. 4), the 
limited data available on H. alikunhii from its original de-
scription (Subhash Babu and Nair 2004) suggests that the 
species is not morphometrically different from its three 
congeners. Horaglanis thus provides a case of extreme 
morphological stasis, similar to that seen in the African 
freshwater butterfly fish Pantodon (Lavoué et al. 2010), 
the Lake Tanganyikan cichlid Tropheus (Sturmbauer and 
Meyer 1992), and the subterranean catfishes of the genera 
Rhamdiopsis and Trichomycterus (Trajano 2021). Mor-
phological stasis is often attributed to stabilizing selection 
(Sturmbauer and Meyer 1992; Parson 1994) influenced by 
factors such as lack of interspecific competition (Sturm-
bauer and Meyer 1992; Trajano 2021), the high energetic 
costs of life in harsh environments that preclude major 
evolutionary change (Turner 1986), low metabolic rates 
leading to low fecundity as an adaptation to survive in 
stressful and low-energy environments that restrict fur-
ther morphological changes (Howarth 1993), and to life in 
stable phreatic environments over a long period (Trajano 
2021). We suspect that morphological stasis in Horagla-
nis may be the result of a combination of several of these 
factors. The small pore size of the lateritic rocks in the 
aquifers restricts access to this habitat for other subterra-
nean predators such as Aenigmachanna (Britz et al. 2020), 
resulting in a predator-free environment for Horaglanis, 
thus severely limiting interspecific competition. The 
low number of just 25 to 30 comparatively large eggs in 
Horaglanis (Mercy 1981) may be a response to living in 
a nutrient poor habitat. Compared to other aquatic sys-
tems, which are influenced by numerous external factors, 
lateritic aquifers would have provided a stable and eco-
logically homogenous environment for Horaglanis over 
a long period of time, likely the most important factor in 
stabilizing its external morphology despite speciation and 
significant diversification at the genetic level.

Our decision to describe a new species of Horaglanis 
based exclusively, at this point, on differences in the COI 
barcoding gene has not been taken lightly. We were faced 
with the decision to either (1) synonymize H. alikunhii 
and H. abdulkalami with H. krishnai, given the lack of 
external diagnostic characters, and also include the south-
ernmost Horaglanis, we here refer to H. populi, in this 
taxon, or (2) to make a name available for the latter. In 
view of the substantial genetic divergence of this southern 
Horaglanis from its already named congeners, a diver-
gence otherwise not even encountered between genera of 
catfishes (see for example, Bhattacharjee et al. 2012; Zou 
et al. 2020), we decided to describe a new species based 

solely on molecular characters. Lending further support 
to our decision is the fact that the four species form recip-
rocally monophyletic clades in the multigene phylogeny. 
This is confirmed by genetic species delimitation based 
on two independent methods: genetic barcode gap anal-
ysis (using ASAP) and Poisson tree process (using PTP, 
bPTP and mPTP). It remains to be investigated whether 
the morphological stasis among species of Horaglanis 
that we encountered in relation to external characters ap-
plies also to internal anatomical characters.

Part of the reason why Horaglanis has received only 
cursory scientific attention in the past is the rarity of the 
occasions on which these fishes have been collected. The 
dearth of specimens has rendered detailed studies on their 
anatomy, ecology and life history impossible. Our ongo-
ing ‘citizen science’ campaign has helped raise awareness 
of the subterranean fauna of southern India, and this has 
in turn dramatically increased the number of occurrence 
reports of these interesting fishes. It has also led to more 
specimens becoming available for research. Interested 
citizen naturalists have, no doubt, been at the forefront of 
aiding improvement of our knowledge of Horaglanis, es-
pecially through making available rare observations, pho-
tographs, videos and specimens. Our Horaglanis project 
is an excellent example of how the involvement of the 
general public can substantially increase our knowledge 
of rarely collected organisms that live in relatively inac-
cessible habitats, through multiplying eyes and ears of re-
searchers by several orders of magnitude (Tricario 2022).

Cryptic species and evolutionarily distinct lineages 
with small distribution ranges are highly vulnerable to ex-
tinction, particularly if residing in groundwater and sub-
terranean habitats (Niemiller et al. 2013). The species of 
Horaglanis have received little or no protection through 
local or regional legislation, and their habitats are em-
bedded within densely populated human landscapes. The 
entrances (often as dug-out wells) to the lateritic aquifers 
inhabited by Horaglanis have hitherto been reported en-
tirely from privately owned lands, where groundwater is 
extracted at high levels for both household and agricul-
tural purposes, and laterite soil is extensively mined for 
developmental activities (Raghavan et al. 2021). Given 
that many localities in which Horaglanis occurs are with-
in 30 km of the coast, an additional threat is the intru-
sion of seawater into these aquifer systems, from which 
water extraction is both substantial and unregulated (see 
Prusty and Farooq 2020). Ensuring the security of these 
enigmatic stygobitic catfishes in the lateritic aquifers of 
Kerala will therefore require a landscape-level planning 
and implementation approach involving a variety of 
stakeholders. These will have to include local communi-
ties that have played the most important role in helping 
bridge biodiversity knowledge shortfalls.
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